Abstract

Evolutionary multitasking algorithms (EMT) study how to solve multiple optimization tasks simultaneously by evolutionary computation, and investigate how knowledge sharing can accelerate the convergence of individual tasks, meaning that useful knowledge gained in solving one task can be used to solve other tasks. However, as the evolutionary search continues, the learnability among tasks may decrease, leading to a decrease in the efficiency of knowledge transfer and affecting the population evolution. To solve this problem, a new multifactorial evolutionary algorithm (MFEA-VOM) is proposed in this paper, which applies to three strategies, namely, implicit conversion strategy, opposition matrix strategy, and regulatory gene fusion strategy. The implicit conversion strategy is applied to minimize the threat of negative knowledge migration and reduce the impact caused by negative knowledge migration. The proposed opposition matrix strategy explores more unknown areas of the population and improves the exploration ability of the population by further exploring and utilizing the unified search space, transforming the parent individuals into an appropriate task through mapping relationships, and reducing the gap between tasks. The proposed regulatory gene fusion strategy is applied to the reproduction of individuals to produce better individuals applicable to the task, submitting the efficiency of knowledge transfer. Through a comprehensive experimental analysis of the EMT optimization problem, the experimental results demonstrate the better performance of MFEA-VOM compared to other EMT algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.