Abstract
This paper considers multiobjective integer programming problems where each coefficient of the objective functions is expressed by a random fuzzy variable. A new decision making model is proposed by incorporating the concept of probability maximization into a possibilistic programming model. For solving transformed deterministic problems, genetic algorithms with double strings for nonlinear integer programming problems are introduced. An interactive fuzzy satisficing method is presented for deriving a satisficing solution to a decision maker by updating the reference probability levels. An illustrative numerical example is provided to clarify the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.