Abstract

BackgroundGrowing evidence indicates that advanced glycation end-product receptor (RAGE) might play a contributory role in the pathogenesis of coronary artery disease (CAD). To shed some light from a genetic perspective, we sought to investigate the interactive association of RAGE gene four common polymorphisms (rs1800625 or T-429C, rs1800624 or T-374A, rs2070600 or Gly82Ser, and rs184003 or G1704A) with the risk of developing CAD in a large northeastern Han Chinese population.Methodology/Principal FindingsThis was a hospital-based case-control study incorporating 1142 patients diagnosed with CAD and 1106 age- and gender-matched controls. All individuals were angiographically confirmed. Risk estimates were expressed as odds ratio (OR) and 95% confidence interval (CI). Overall there were significant differences in the genotype and allele distributions of rs1800625 and rs184003, even after the Bonferroni correction. Logistic regression analyses indicated that rs1800625 and rs184003 were associated with significant risk of CAD under both additive (OR = 1.20 and 1.23; 95% CI: 1.06–1.37 and 1.06–1.42; P = 0.006 and 0.008) and recessive (OR = 1.75 and 2.39; 95% CI: 1.28–2.40 and 1.47–3.87; P<0.001 and <0.001) models after adjusting for confounders. In haplotype analyses, haplotypes C-T-G-G and T-A-G-T (alleles in order of rs1800625, rs1800624, rs2070600 and rs184003), overrepresented in patients, were associated with 52% (95% CI: 1.19–1.87; P = 0.0052) and 63% (95% CI: 1.14–2.34; P = 0.0075) significant increases in adjusted risk for CAD. Further interactive analyses identified an overall best multifactor dimensionality reduction (MDR) model including rs1800625 and rs184003. This model had a maximal testing accuracy of 0.6856 and a cross-validation consistency of 10 out of 10 (P = 0.0016). The validity of this model was substantiated by classical Logistic regression analysis.ConclusionsOur findings provided strong evidence for the potentially contributory roles of RAGE multiple genetic polymorphisms, especially in the context of locus-to-locus interaction, in the pathogenesis of CAD among northeastern Han Chinese.

Highlights

  • Advanced glycation end-product receptor is a member of the immunoglobulin superfamily of cell surface receptors, and it interacts with advanced glycation end-products and other molecules implicated in inflammation, atherogenesis and vasoconstriction, eventually leading to coronary dysfunction, atherosclerosis and thrombosis [1,2,3]

  • Plasma sRAGE levels were negatively associated with the angiographically-confirmed coronary artery disease (CAD), and this association was dose-dependent with patients in the lowest quartile of sRAGE exhibiting the highest risk of CAD [7]

  • We sought to investigate the interactive association of these four common polymorphisms in RAGE gene with the risk of developing CAD in a large northeastern Han Chinese population

Read more

Summary

Introduction

Advanced glycation end-product receptor (protein: RAGE; gene: RAGE) is a member of the immunoglobulin superfamily of cell surface receptors, and it interacts with advanced glycation end-products and other molecules implicated in inflammation, atherogenesis and vasoconstriction, eventually leading to coronary dysfunction, atherosclerosis and thrombosis [1,2,3]. To make definitive claims about the involvement of RAGE gene in the development of CAD, comprehensive genetic approaches such as replication studies with other populations have attracted special attention. We sought to investigate the interactive association of these four common polymorphisms in RAGE gene with the risk of developing CAD in a large northeastern Han Chinese population. Growing evidence indicates that advanced glycation end-product receptor (RAGE) might play a contributory role in the pathogenesis of coronary artery disease (CAD). To shed some light from a genetic perspective, we sought to investigate the interactive association of RAGE gene four common polymorphisms (rs1800625 or T-429C, rs1800624 or T374A, rs2070600 or Gly82Ser, and rs184003 or G1704A) with the risk of developing CAD in a large northeastern Han Chinese population

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.