Abstract
We consider expected return, Conditional Value at Risk, and liquidity criteria in a multi-period portfolio optimization setting modeled by stochastic programming. We aim to identify a preferred solution of the decision maker (DM) by obtaining information on her/his preferences. We use a weighted Tchebycheff program to generate representative sets of solutions. Our approach models the stochasticity of market movements by stochastic programming. Working with multiple scenario trees, we construct confidence ellipsoids around representative solutions, and present them to the DM for her/him to make a choice. With each iteration of the approach, an increasingly concentrated set of ellipsoids around the DM’s choices are generated. The procedure is demonstrated with tests performed using stocks traded on Borsa Istanbul.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.