Abstract

A small group of simple, lateral assumptions about the structure and nature of space, some of them at the Planck scale, produces a new conceptual basis. The background theory allows a rederivation of several areas of theory it interprets, leading in other areas to alternative mathematics that closely mimics existing physics, but diverging enough for testable predictions. This paper focusses on the phenomenology of quantum mechanics (QM), with a nonlocal interpretation, in which the wave function is primarily ontic, but also has an epistemic aspect. It differs widely from all other interpretations for QM, but has general similarities to some objective collapse theories, and in particular to relational QM (RQM). State reduction is set off by interactions, not measurements, but unlike in RQM, the “exchange of information” between two systems is not only made possible by the interaction, it is a direct result of it. The interpretation includes an explanation for quantization, the probabilistic aspect of QM, entanglement, and state reduction as in decoherence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call