Abstract

Abdomen and germ cell development of Drosophila melanogaster embryo requires proper localization of oskar mRNA to the posterior pole of the developing oocyte. oskar mRNA localization depends on complex cell biological events like cell-cell communication, dynamic rearrangement of the microtubule network, and function of the actin cytoskeleton of the oocyte. To investigate the cellular mechanisms involved, we developed a novel interaction type of genetic screen by which we isolated 14 dominant enhancers of a sensitized genetic background composed of mutations in oskar and in TropomyosinII, an actin binding protein. Here we describe the detailed analysis of two allelic modifiers that identify Drosophila Rab11, a gene encoding small monomeric GTPase. We demonstrate that mutation of the Rab11 gene, involved in various vesicle transport processes, results in ectopic localization of oskar mRNA, whereas localization of gurken and bicoid mRNAs and signaling between the oocyte and the somatic follicle cells are unaffected. We show that the ectopic oskar mRNA localization in the Rab11 mutants is a consequence of an abnormally polarized oocyte microtubule cytoskeleton. Our results indicate that the internal membranous structures play an important role in the microtubule organization in the Drosophila oocyte and, thus, in oskar RNA localization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.