Abstract

The coronavirus nucleocapsid (N) protein plays an essential role in virion assembly via interactions with the large, positive-strand RNA viral genome and the carboxy-terminal endodomain of the membrane protein (M). To learn about the functions of N protein domains in the coronavirus mouse hepatitis virus (MHV), we replaced the MHV N gene with its counterpart from the closely related bovine coronavirus (BCoV). The resulting viral mutant was severely defective, even though individual domains of the N protein responsible for N-RNA, N-M, or N-N interactions were completely interchangeable between BCoV and MHV. The lesion in the BCoV N substitution mutant could be compensated for by reverting mutations in the central, serine- and arginine-rich (SR) domain of the N protein. Surprisingly, a second class of reverting mutations were mapped to the amino terminus of a replicase subunit, nonstructural protein 3 (nsp3). A similarly defective MHV N mutant bearing an insertion of the SR region from the severe acute respiratory syndrome coronavirus N protein was rescued by the same two classes of reverting mutations. Our genetic results were corroborated by the demonstration that the expressed amino-terminal segment of nsp3 bound selectively to N protein from infected cells, and this interaction was RNA independent. Moreover, we found a direct correlation between the N-nsp3 interaction and the ability of N protein to stimulate the infectivity of transfected MHV genomic RNA (gRNA). Our results suggest a role for this previously unknown N-nsp3 interaction in the localization of genomic RNA to the replicase complex at an early stage of infection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call