Abstract

- Drosophila and other ectotherms show geographic genetic variation in body size, with larger individuals at higher latitudes and altitudes. Temperature is implicated as an important selective agent because long-term laboratory culture of Drosophila leads to the evolution of larger body size at lower temperatures. In this paper, we tested the hypothesis that, in Drosophila melanogaster, larger size is favored at lower temperatures in part because of selection on adult females. We used replicated lines of D. melanogaster artificially selected for increased and decreased wing area with constant cell area. The resulting size differences between the selected lines were due solely to differences in cell number, and thereby were similar to the cellular basis of clinal variation in body size in nature. We examined life-history traits of adult females at 18 and 25°C. Rearing for two generations at the two temperatures did not affect the extent of the size differences between lines from the different selection regimes. There was a strong interaction between temperature and size selection for both survival and lifetime reproductive success, with larger females living significantly longer and producing more offspring over their lifetime only when reared and tested in the colder environment. There was also an increase in average daily progeny production in large-line females relative to the control and small lines again, only in the colder environment. Thus, the females from the large selection lines were relatively fitter at the colder temperature. At both experimental temperatures, especially the lower one, the small- line females rescheduled their progeny production to later ages. Larger body size may have evolved at higher latitudes and altitudes because of the advantages to the adult female of being larger at lower temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call