Abstract
A model is developed for brittle failure under compressive loading with an explicit accounting of micro-crack interactions. The model incorporates a pre-existing flaw distribution in the material. The macroscopic inelastic deformation is assumed to be due to the nucleation and growth of tensile “wing” micro-cracks associated with frictional sliding on these flaws. Interactions among the cracks are modeled by means of a crack-matrix-effective-medium approach in which each crack experiences a stress field different from that acting on isolated cracks. This yields an effective stress intensity factor at the crack tips which is utilized in the formulation of the crack growth dynamics. Load-induced damage in the material is defined in terms of a scalar crack density parameter, the evolution of which is a function of the existing flaw distribution and the crack growth dynamics. This methodology is applied for the case of uniaxial compression under constant strain rate loading. The model provides a natural prediction of a peak stress (defined as the compressive strength of the material) and also of a transition strain rate, beyond which the compressive strength increases dramatically with the imposed strain rate. The influences of the crack growth dynamics, the initial flaw distribution, and the imposed strain rate on the constitutive response and the damage evolution are studied. It is shown that different characteristics of the flaw distribution are dominant at different imposed strain rates: at low rates the spread of the distribution is critical, while at high strain rates the total flaw density is critical.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.