Abstract

Manycore processor system is becoming an attractive platform for applications seeking both high performance and high energy efficiency. However, huge communication demands among cores, large power density, and low process yield will be three significant limitations for the scalability of future manycore processors. Breaking a large chip into multiple smaller ones can alleviate the problems of power density and yield, but would worsen the problem of communication efficiency due to the limited off-chip bandwidth. In response, we propose an inter/intra-chip optical network, which will not only fulfill the intra-chip communication requirements but also address the inter-chip communication, by exploiting the advantages of optical links with high bandwidth and energy efficiency. The network is composed of an inter-chip subnetwork and multiple intra-chip subnetworks, and the subnetworks closely coordinate with each other to balance the traffic. The proposed network effectively explores the distinctive properties of optical signals and photonic devices, and dynamically partitions each data channel into multiple sections. Each section can be utilized independently to boost performance as well as reduce energy consumption. Simulation results show that our network can achieve higher throughput with lower power consumption than alternative designs under most of synthetic traffics and real applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.