Abstract

We investigate the higher-order modal logic $S_{\omega}I$, which is a variant of the system $S_{\omega}$ presented in our previous work. A semantics for that system, founded on the theory of quasi sets, is outlined. We show how such a semantics, motivated by the very intuitive base of Schrödinger logics, provides an alternative way to formalize some intensional concepts and features which have been used in recent discussions on the logical foundations of quantum mechanics; for example, that some terms like 'electron' have no precise reference and that 'identical' particles cannot be named unambiguously. In the last section, we sketch a classical semantics for quasi set theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.