Abstract

We employ laser cooling to intensify and cool an atomic beam of metastable Ne(3s) atoms. Using several collimators, a slower and a compressor we achieve a ^{20}Ne^* flux of 6 10^{10} atoms/s in an 0.7 mm diameter beam traveling at 100 m/s, and having longitudinal and transverse temperatures of 25mK and 300microK, respectively. This constitutes the highest flux in a concentrated beam achieved to date with metastable rare gas atoms. We characterize the action of the various cooling stages in terms of their influence on the flux, diameter and divergence of the atomic beam. The brightness and brilliance achieved are 2.1 10^{21} s^{-1} m^{-2} sr^{-1} and 5.0 10^{22} s^{-1} m^{-2} sr^{-1}, respectively, comparable to the highest values reported for alkali-metal beams. Bright beams of the ^{21}Ne and ^{22}Ne isotopes have also been created.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call