Abstract

Emerging applications in Multihop Wireless Networks (MHWNs) require considerable processing power which often may be beyond the capability of individual nodes. Parallel processing provides a promising solution, which partitions a program into multiple small tasks and executes each task concurrently on independent nodes. However, multihop wireless communication is inevitable in such networks and it could have an adverse effect on distributed processing. In this paper, an adaptive intelligent task mapping together with a scheduling scheme based on a genetic algorithm is proposed to provide real-time guarantees. This solution enables efficient parallel processing in a way that only possible node collaborations with cost-effective communications are considered. Furthermore, in order to alleviate the power scarcity of MHWN, a hybrid fitness function is derived and embedded in the algorithm to extend the overall network lifetime via workload balancing among the collaborative nodes, while still ensuring the arbitrary application deadlines. Simulation results show significant performance improvement in various testing environments over existing mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.