Abstract
Benzoyl peroxide (BPO) is a commonly used flour whitener, but its excessive usage can have adverse effects on human health, such as nutrient loss, vitamin deficiencies and certain diseases. In this study, a europium metal organic framework (Eu-MOF) fluorescence probe was prepared, which exhibited a strong fluorescence emission at 614 nm upon excitation at 320 nm, with a high quantum yield of 8.11%. The red fluorescence of the probe could be effectively quenched by BPO through the inner filter effect (IFE) and photoinduced electron transfer (PET) mechanism. The detection process offered several advantages, including a wide linear range of 0–0.95 mM, a low detection limit of 66 nM and a fast fluorescence response of 2 min. Furthermore, an intelligent detection platform was designed to enhance the practical application of the detection method. This platform combined the portability and visuality of a traditional test strip with the color recognition capability of a smartphone, allowing for the visualization and quantitative detection of BPO in a convenient and user-friendly manner. The detection platform was successfully applied to the analysis of BPO in real flour samples with satisfactory recoveries (99.79%–103.94%), suggesting a promising strategy for the rapid and on-site detection of BPO in food samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.