Abstract
ABSTRACT Cutting tool manufacturers face a tough challenge in developing custom solutions for specific customer requirements. Several trials are required, encompassing the selection of materials, tool configuration parameters, manufacturing of tools and testing under target conditions to arrive at an acceptable solution. In this work, the authors present a recommender system that utilizes a hierarchical deep learning-based machine learning model, handcrafted using domain knowledge, to predict top N tool configurations for a given target requirement with a probability score. The authors also discuss methods for data augmentation to deal with limited data as well as a probabilistic approach to predict the top N tool configurations from the trained models. The proposed system is applied to a case of centerless cylindrical grinding wheel selection problem. The outcomes indicate an overall accuracy of 92.4% for single best-fit specification, with 100% within the top five recommendations for past designs. Some of the alternatives proposed by the model are observed to be potentially superior to what was chosen earlier by experts. Without the selection hierarchy, a deep learning model achieved a single best-fit accuracy of 83.5% and the probabilistic model achieved a top-five recommendation accuracy of 89.8%, highlighting the merit of the hierarchical approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computer Integrated Manufacturing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.