Abstract

With the advantages of flexible parking locations and convenient cycling, Dockless Bicycle-sharing (DBS) has become increasingly popular worldwide. However, with the massive increase of DBSs and electric fences, DBS systems face several challenges: (1) the hardness of identifying the DBS tidal zones; (2) the difficulty of accurately evaluating and identifying overload fences; (3) the issues of rebalancing DBS in time. To deal with these challenges, we propose a Dockless Bicycle-sharing Dynamic Rebalance (DBSDR) system to dynamically provide the optimal bicycle guidance for the DBS network. The DBSDR system contains three modules: DBS tidal zone identification, evaluation framework of overload fences, and DBS dynamic guidance. For DBS tidal zone identification, tidal zone identification and location from each fence with bicycle flows are provided with the HDBSCAN clustering method. The evaluation framework, covering DBS flows and the parking demand density, is proposed to assess the characteristics of overload fences. Finally, a DBS dynamic guidance method is provided to balance DBS for the tidal phenomenon with guiding users to the optimal target fence. Extensive experiments conducted on real-world DBS datasets show the effectiveness and accuracy of rebalancing the tidal phenomenon in the DBS system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.