Abstract
Condition monitoring and fault diagnosis in modern manufacturing automation is of great practical significance. It improves quality and productivity, and prevents damage to machinery. In general, this practice consists of two parts: 1)extracting appropriate features from sensor signals and 2)recognizing possible faulty patterns from the features. Through introducing the concept of marginal energy in signal processing, a new feature representation is developed in this paper. In order to cope with the complex manufacturing operations, three approaches are proposed to develop a feasible system for online applications. This paper develops intelligent learning algorithms using hidden Markov models and the newly developed support vector techniques to model manufacturing operations. The algorithms have been coded in modular architecture and hierarchical architecture for the recognition of multiple faulty conditions. We define a novel similarity measure criterion for the comparison of signal patterns which will be incorporated into a novel condition monitoring system. The sensor-based intelligent system has been implemented in stamping operations as an example. We demonstrate that the proposed method is substantially more effective than the previous approaches. Its unique features benefit various real-world manufacturing automation engineering, and it has great potential for shop floor applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Automation Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.