Abstract

It is far from trivial to inspect railways for defections. In particular, for the foot area of the rail non destructive testing methods are known to be difficult to apply. In this paper, an ultrasonic guided wave method is considered along with classification methods for automated rail foot defect detection. In effect, given a set of gathered ultrasonic signals, multiple features are extracted from time-, frequency- and time–frequency domains. Next, a robust feature selection method is performed, to collect a small set of complementary features. The classification task is accomplished by means of a kernel-based support vector machine. To demonstrate the performance capabilities of our approach, an extensive experimental setup is designed under representative environmental and operational conditions. The sensitivity and the resolution of the proposed defect detection system are reported. A study on the influence of rail fastening on the proposed method is also reported where robust defect detection rates, greater than 93 %, are achieved assuming that a compact feature subset is considered. However, it is evident in experiments that even in the case of large defects, changes in the environmental conditions (temperature and humidity) increase the interpretation of the acquired signals, thus making the detection task more difficult.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.