Abstract

The clinical efficacy of epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs)-based targeted molecular therapies (TMT) is inevitably hampered by the development of acquired drug resistance in non-small cell lung cancer (NSCLC) treatment. Sonodymanic therapy (SDT) is a promising new cancer treatment approach, but its effects are restricted by tumor hypoxia. Herein, a nanoplatform fabricated by erlotinib-modified chitosan loading sonosensitizer hematoporphyrin (HP) and oxygen-storing agent perfluorooctyl bromide (PFOB), namely CEPH, was developed to deliver HP to erlotinib-sensitive cells. CEPH with ultrasound could alleviate hypoxia inside the three-dimensional multicellular tumor spheroids, suppress NSCLC cell growth under normoxic or hypoxic condition, and enhance TMT/SDT synergistic effects through elevated production of reactive oxygen species, decrease of mitochondrial membrane potential, and down-regulation of the expression of the proteins EGFR, p-EGFR, and HIF-1α. Hence, CEPH could be a potential nanoplatform to improve the efficacy of oxygen-dependent SDT and overcome hypoxia-induced TMT resistance for enhanced synergistic TMT/SDT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call