Abstract

Concurrency control is the activity of synchronizing operations issued by concurrent executing transactions on a shared database. The aim of this control is to provide an execution that has the same effect as a serial (non-interleaved) one. The optimistic concurrency control technique allows the transactions to execute without synchronization, relying on commit-time validation to ensure serializability. Effectiveness of the optimistic techniques depends on the conflict rate of transactions. Since different systems have various patterns of conflict and the patterns may also change over time, so applying the optimistic scheme to the entire system results in degradation of performance. In this paper, a novel algorithm is proposed that dynamically selects the optimistic or pessimistic approach based on the value of conflict rate. The proposed algorithm uses an adaptive resonance theory–based neural network in making decision for granting a lock or detection of the winner transaction. In addition, the parameters of this neural network are optimized by a modified gravitational search algorithm. On the other hand, in the real operational environments we know the writeset (WS) and readset (RS) only for a fraction of transactions set before execution. So, the proposed algorithm is designed based on optional knowledge about WS and RS of transactions. Experimental results show that the proposed hybrid concurrency control algorithm results in more than 35 % reduction in the number of aborts in high-transaction rates as compared to strict two-phase locking algorithm that is used in many commercial database systems. This improvement is 13 % as compared to pure-pessimistic approach and is more than 31 % as compared to pure-optimistic approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call