Abstract

The vibration signals of rolling bearings are affected by changing operating conditions and environmental noise, so they are characterized by multi-scale complexity. Deep residual shrinkage network can achieve bearing fault diagnosis in strong noise environment, but ignore the multi-scale complexity feature. To address this problem, we propose a multi-scale residual shrinkage convolutional neural network for fault diagnosis of rolling bearing. In this method, a multi-scale residual shrinkage layer based on multi-scale learning and a residual shrinkage block is constructed. By stacking multiple multi-scale residual shrinkage layers, the features of vibration signals are automatically learned from the input data. In addition, to establish the connection of different vibration signals and to reduce the number of parameters in the network, we design a separable convolution block using residual connections and separable convolution. By verifying the effectiveness of the proposed method in Case Western Reserve University and Mechanical Failure Prevention Technology datasets, the results show that the proposed method not only has good noise resistance in strong noise environments, but also has high diagnostic accuracy and good generalization performance in different load condition domains. The proposed method is compared with three other deep learning methods under the same experimental conditions, and the results show that it is superior in rolling bearing fault diagnosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.