Abstract

Groundwater and soil contamination resulted from LNAPLs (light nonaqueous phase liquids) spills and leakage in petroleum industry is currently one of the major environmental concerns in North America. Numerous site remediation technologies have been developed and implemented in the last two decades. They are classified as ex-situ and in-situ remediation techniques. One of the problems associated with ex-situ remediation is the cost of operation. In recent years, in-situ techniques have acquired popularity. However, the selection of the optimal techniques is difficult and insufficient expertise in the process may result in large inflation of expenses. This study presents an expert system (ES) for the management of petroleum contaminated sites in which a variety of artificial intelligence (AI) techniques were used to construct a support tool for site remediation decision-making. This paper presents the knowledge engineering processes of knowledge acquisition, conceptual design, and system implementation. The results from some case studies indicate that the expert system can generate cost-effective remediation alternatives to assist decision-makers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.