Abstract

Although the cost-reference particle filter (CRPF) has a good advantage in solving the state estimation problem with unknown noise statistical characteristics, its estimation accuracy is still affected by the lack of particle diversity and sensitivity to the particles' initial value. In order to solve these problems of the CRPF, this paper proposed an intelligent cost-reference particle filter algorithm based on multi-population cooperation. A multi-population cooperative resampling strategy based on ring structure was designed. The particles were divided into multiple independent populations upon initialization, and each population generated particles with a different initial distribution. The particles in each population were divided into three different particle sets with high, medium and low weights by the golden section ratio according to the weight. The particle sets with high and medium weights were retained. Then, a cooperative strategy based on Gaussian mutation was designed to resample the low-weight particle set of each population. The high-weight particles of the previous population in the ring structure were randomly selected for Gaussian mutation to replace the low-weight particles in the current population. The low-weight particles of all populations were resampled in turn. The simulation results show that the intelligent CRPF based on multi-population cooperation proposed in this paper can reduce the sensitivity of the CRPF to the particles' initial value and improve the particle diversity in resampling. Compared with the general CRPF and intelligent CRPF with adaptive MH resampling (MH-CRPF), the RMSE and MAE of the proposed method are lower.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.