Abstract
The distribution of nitrogen oxides (NOx) flux within the cross-section area in front of ammonia injection grid (AIG) under different operating conditions was obtained by computational fluid dynamics (CFD) method. Weight of NOx flux in the sub-zone corresponding to each of the ammonia (NH3) injection branch-pipes of AIG system was analyzed and the sensitivity of which against the plant power load was figured out. A number of “critical” ammonia injection branch-pipes were determined with regard to the weight sensitivity analysis. The selected “critical” branch-pipes were changed to be controlled by the automatic valves, and an intelligent tuning strategy was proposed. The NOx/NH3 mixing stoichiometry over the cross-section area in front of AIG system was significantly modified for the high utilization ratio of ammonia. A case work was launched on the selective catalytic reduction (SCR) system of a 660 MW plant. As a result, the ammonia consumption rate (ACR) was found to be reduced by 6.44% compared to that under previous control system, and was 9.31% lower than that of the unapplied system. The methodology for determining the “critical” branch-pipes and intelligent tuning strategy of ammonia injection notably saved the ammonia consumption of SCR system, and the formation of ammonium bisulfate (ABS) were greatly confined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.