Abstract
Advancements in recent networking and information technology have always been a natural phenomenon. The exponential amount of data generated by the people in their day-to-day lives results in the rise of Big Data Analytics (BDA). Cognitive computing is an Artificial Intelligence (AI) based system that can reduce the issues faced during BDA. On the other hand, Sentiment Analysis (SA) is employed to understand such linguistic based tweets, feature extraction, compute subjectivity and sentimental texts placed in these tweets. The application of SA on big data finds it useful for businesses to take commercial benefits insight from text-oriented content. In this view, this paper presents new cognitive computing with the big data analysis tool for SA. The proposed model involves various process such as pre-processing, feature extraction, feature selection and classification. For handling big data, Hadoop Map Reduce tool is used. The proposed model initially undergoes pre-processing to remove the unwanted words. Then, Term Frequency-Inverse Document Frequency (TF-IDF) is utilized as a feature extraction technique to extract the set of feature vectors. Besides, a Binary Brain Storm Optimization (BBSO) algorithm is being used for the Feature Selection (FS) process and thereby achieving improved classification performance. Moreover, Fuzzy Cognitive Maps (FCMs) are used as a classifier to classify the incidence of positive or negative sentiments. A comprehensive experimental results analysis ensures the better performance of the presented BBSO-FCM model on the benchmark dataset. The obtained experimental values highlights the improved classification performance of the proposed BBSO-FCM model in terms of different measures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.