Abstract

Bearing is regarded as one of the core elements in rotating machines and its fault diagnosis is essential for better reliability and availability of the rotating machines. This paper puts forward an intelligent vibration signal-based fault diagnosis approach for bearing faults identification at an early stage, irrespective of speed conditions. The proposed methodology comprises of a frequency shift-based hybrid signal processing technique that involves a combination of Hilbert Transform (HT) and Discrete Wavelet Transform (DWT) followed by sliding window-based feature extraction. Thereafter, a newly developed Henry Gas Solubility Optimization (HGSO) is implemented to select the relevant features. At last, the optimal attributes are used to train the Artificial Neural Network (ANN) model for the classification of the different bearing faults. To test the effectiveness of the speed independent model, experimental validation was done with constant and varying speed conditions. The results demonstrate that the proposed methodology has a tremendous potential to eliminate unplanned failures caused by bearing in rotating machinery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.