Abstract
Nowadays, more and more researchers are paying their attention to green routing. In this paper, we consider power consumption as a kind of QoS (quality of service) and apply a new learning-based approach for energy efficient transportation and QoS routing. Compared with traditional rule-based methods, the proposed method can learn additional information from the networks to improve routing performance, and have the flexibility to meet different QoS requirements. First, we propose a new identification of network nodes, namely node vectors, and a basic routing algorithm using node vectors is designed accordingly. Then, energy efficient transportation and QoS routing are proposed by adding QoS constraints into the routing decision. Link attributes such as power consumption, bandwidth and delay can be learned from these node vectors with neural networks. The learned link attributes together with the estimated distance can be used for routing decisions with QoS constraints. Simulation results show that the proposed method is reliable in routing tasks, and can achieve a remarkable performance when compared with the state-of-the-art work on the delay constrained least cost path (DCLC) problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.