Abstract

Time sensitive virtual machines that run real-time control tasks are constrained by hard timing requirements. Optimal resource management and guarantee the hard timing requirements of virtual machines are critical goals. Basically, cloud resource usage predicting and resource reservation play a crucial role to achieve these two goals. So, we propose a predicting approach based on two-phase decomposition method and hybrid neural network to predict future resource usage. This paper uses a clustering method based on the AnYa algorithm in an on-line manner in order to obtain the number of fuzzy rules and the initial value of the premise and consequent parameters. Since cloud resource usage varies widely from time to time and server to server, extracting the best time series model for predicting cloud resource usage depend not only on time but on the cloud resource usage trend. For this, we present a recursive hybrid technique based on singular spectrum analysis and adaptively fast ensemble empirical mode decomposition to identify the hidden characteristics of the time series data. This method tries to extract seasonal and irregular components of the time series. According to the simulation results, it can be found that the proposed model can have significantly better performance than the three comparison models from one-step to six-step CPU usage predictions with the MAPE of 33.83% average performance promotion, MAE of 36.54% average performance promotion, RMSE of 36.70% average performance promotion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.