Abstract
Intrusion Detection Systems (IDS) is one of the important aspects of cyber security that can detect the anomalies in the network traffic. IDS are a part of Second defense line of a system that can be deployed along with other security measures such as access control, authentication mechanisms and encryption techniques to secure the systems against cyber-attacks. However, IDS suffers from the problem of handling large volume of data and in detecting zero-day attacks (new types of attacks) in a real-time traffic environment. To overcome this problem, an intelligent Deep Learning approach for Intrusion Detection is proposed based on Convolutional Neural Network (CNN-IDS). Initially, the model is trained and tested under a new real-time traffic dataset, CSE-CIC-IDS 2018 dataset. Then, the performance of CNN-IDS model is studied based on three important performance metrics namely, accuracy / training time, detection rate and false alarm rate. Finally, the experimental results are compared with those of various Deep Discriminative models including Recurrent Neural network (RNN), Deep Neural Network (DNN) etc., proposed for IDS under the same dataset. The Comparative results show that the proposed CNN-IDS model is very much suitable for modelling a classification model both in terms of binary and multi-class classification with higher detection rate, accuracy, and lower false alarm rate. The CNN-IDS model improves the accuracy of intrusion detection and provides a new research method for intrusion detection.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.