Abstract

In this paper, the algebraic analysis approach to linear state-space systems is further developed using rings of integro-differential operators. The module structure of linear state-space systems is investigated over these rings. The module associated with a linear state-space system is shown to be the direct sum of the stably free module defined by the linear system without inputs and the free module defined by the inputs of the system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.