Abstract

We study a scalar integro-differential conservation law which was recently derived by the authors as the slow erosion limit of a granular flow. Considering a set of more general erosion functions, we study the initial boundary value problem for which one cannot adapt the standard theory of conservation laws. We construct approximate solutions with a fractional step method, by recomputing the integral term at each time step. A prioriL∞bound and total variation estimates yield the convergence and global existence of solutions with bounded variation. Furthermore, we present a well-posedness analysis which establishes that these solutions are stable in the L1norm with respect to the initial data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.