Abstract

<p>In the past decades, space-based Earth Observations (EO) have been rapidly advancing in monitoring the global water cycle, in particular for the variables related to precipitation, evapotranspiration and soil moisture, often at (tens of) kilometre scales. Whilst these data are highly effective to characterise water cycle variation at regional to global scale, they are less suitable for sustainable management of water resource, which needs more detailed information at local and field scale due to inhomogeneous characteristics of the soil and vegetation. To effectively exploit existing knowledge at different scales we thus need to answer the following questions: How to downscale the global water cycle products to local scale using multiple sources/scales of EO data? How to explore and apply the downscaled information at the management level for understanding soil-water-vegetation-energy processes? And how to use such fine-scale information to improve the management of soil and water resources? An integrative information aqueduct (iAqueduct) is proposed to close the gaps between global satellite observation of water cycle and local needs of information for sustainable management of water resources. iAqueduct aims to accomplish its goals by combining Copernicus satellite data (with intermediate resolutions) with high resolution Unmanned Aerial System (UAS) and in-situ observations to develop scaling functions for soil properties and soil moisture and evapotranspiration at high spatial resolution scales.</p>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call