Abstract

The application of the Comet assay in environmental monitoring remains challenging in face of the complexity of environmental stressors, e.g., when dealing with estuarine sediments, that hampers the drawing of cause-effect relationships. Although the in vitro Comet assay may circumvent confounding factors, its application in environmental risk assessment (ERA) still needs validation. As such, the present work aims at integrating genotoxicity and oxidative DNA damage induced by sediment-bound toxicants in HepG2 cells with oxidative stress-related effects observed in three species collected from an impacted estuary. Distinct patterns were observed in cells exposed to crude mixtures of sediment contaminants from the urban/industrial area comparatively to the ones from the rural/riverine area of the estuary, with respect to oxidative DNA damage and oxidative DNA damage. The extracts obtained with the most polar solvent and the crude extracts caused the most significant oxidative DNA damage in HepG2 cells, as measured by the formamidopyrimidine-DNA glycosylase (FPG)-modified Comet assay. This observation suggests that metals and unknown toxicants more hydrophilic than polycyclic aromatic hydrocarbons may be important causative agents, especially in samples from the rural part of the estuary, where oxidative DNA damage was the most significant. Clams, sole, and cuttlefish responded differentially to environmental agents triggering oxidative stress, albeit yielding results accordant with the oxidative DNA damage observed in HepG2 cells. Overall, the integration of in vivo biomarker responses and Comet assay data in HepG2 cells yielded a comparable pattern, indicating that the in vitro FPG-modified Comet assay may be an effective and complementary line-of-evidence in ERA even in particularly challenging, natural, scenarios such as estuarine environments.

Highlights

  • Ever since the original publication of the protocol by Singh et al (1988), the alkaline Comet assay rapidly developed into one of the most prolific tools for those performing research on environmental genotoxicity

  • The present study aims essentially at comparing the performance, as ecotoxicological indicators, of the formamidopyrimidine-DNA glycosylase (FPG)-modified Comet assay in HpG2 cells exposed to sedimentbound contaminants with that of common oxidative stress-related biomarkers determined in three distinct organisms collected from an impacted estuarine area

  • CONCLUDING REMARKS In the present work, an integrative assessment of genotoxic effects triggered by sediment-bound contaminants with oxidative stress biomarkers in three different species collected from an impacted estuary was conducted, consisting of an innovative combination of cell and whole-organism responses

Read more

Summary

Introduction

Ever since the original publication of the protocol by Singh et al (1988), the alkaline Comet assay rapidly developed into one of the most prolific tools for those performing research on environmental genotoxicity This paramount technical achievement quickly became one of the most important tools to assess the hazards of genotoxicants in the environment, with emphasis on the aquatic milieu (see Mitchelmore and Chipman, 1998). Within these ecosystems, sediments have been targeted in environmental risk assessment (ERA) studies due to their ability to trap, store, and (depending on disruption of their steady-state) release contaminants back to the biota. Regardless of being logistics-friendly and able to reduce much of the confounding factors that often hinder the interpretation of results when testing or sampling in situ aquatic organisms, it is clear that the results obtained in vitro need to be compared with www.frontiersin.org

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.