Abstract
Directed networks have been widely used to describe many biological processes and functions. Understanding the structure of biological networks, especially regulatory networks, could help discover the mechanisms underlying important biological processes and pathogenesis of diseases. Most network inference methods assume the network structure is time-invariant or stationary. However, in some processes, the network structure is non-stationary or time-varying. The stationary network inference methods might not be able to directly used to reconstruct time-varying networks. Some non-stationary network learning methods have been proposed to infer the networks, but, the inferred networks are not regulatory networks which require activation and inhibition information. This work proposes an integrative approach, which combines the changepoint estimation, weighted network learning and searching, and model checking technique, to reconstruct time varying regulatory networks from high-dimensional time series data. We illustrate this approach to study the structure changes of Drosophila's regulatory networks in its life cycle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings : ... IEEE International Conference on Big Data. IEEE International Conference on Big Data
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.