Abstract
Abstract This paper proposes an integrated wind-photovoltaic-battery hybrid system that features a simple power management strategy, requires a lower number of power-electronic converters, and eliminates the need for dump loads. Thus, it is expected to offer a lower cost and higher efficiency, and to enable easier integration with distribution networks, as compared with a set of three stand-alone system. The power management strategy of the proposed hybrid system enables (1) rapid control of the wind and photovoltaic (PV) power outputs for tightly regulating the battery current, (2) off-grid operation with black-start capability, (3) grid-connected operation, and (4) safe transition from the grid-connected mode to the off-grid mode, and vice versa, without a need for communications with the host grid. Further, the proposed hybrid system is expected to have plug-and-play and power sharing capabilities and, therefore, suited for multi-generator remote electrification systems. The effectiveness of the proposed hybrid system is demonstrated through time-domain simulation studies in the PSCAD/EMTDC software environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.