Abstract

The Greenland ice sheet is a major contributor to sea level rise, adding on average 0.47 ± 0.23 mm year − 1 to global mean sea level between 1991 and 2015. The cryosphere as a whole has contributed around 45% of observed global sea level rise since 1993. Understanding the present-day state of the Greenland ice sheet is therefore vital for understanding the processes controlling the modern-day rates of sea level change and for making projections of sea level rise into the future. Here, we provide an overview of the current state of the mass budget of Greenland based on a diverse range of remote sensing observations to produce the essential climate variables (ECVs) of ice velocity, surface elevation change, grounding line location, calving front location, and gravimetric mass balance as well as numerical modelling that together build a consistent picture of a shrinking ice sheet. We also combine these observations with output from a regional climate model and from an ice sheet model to gain insight into existing biases in ice sheet dynamics and surface mass balance processes. Observations show surface lowering across virtually all regions of the ice sheet and at some locations up to −2.65 m year − 1 between 1995 and 2017 based on radar altimetry analysis. In addition, calving fronts at 28 study sites, representing a sample of typical glaciers, have retreated all around Greenland since the 1990s and in only two out of 28 study locations have they remained stable. During the same period, two of five floating ice shelves have collapsed while the locations of grounding lines at the remaining three floating ice shelves have remained stable over the observation period. In a detailed case study with a fracture model at Petermann glacier, we demonstrate the potential sensitivity of these floating ice shelves to future warming. GRACE gravimetrically-derived mass balance (GMB) data shows that overall Greenland has lost 255 ± 15 Gt year − 1 of ice over the period 2003 to 2016, consistent with that shown by IMBIE and a marked increase compared to a rate of loss of 83 ± 63 Gt year − 1 in the 1993–2003 period. Regional climate model and ice sheet model simulations show that surface mass processes dominate the Greenland ice sheet mass budget over most of the interior. However, in areas of high ice velocity there is a significant contribution to mass loss by ice dynamical processes. Marked differences between models and observations indicate that not all processes are captured accurately within models, indicating areas for future research.

Highlights

  • The Greenland ice sheet is a major contributor to present day observed sea level rise [1,2] and a changing Arctic climate will likely continue to have a profound impact on the ice sheet mass budget in the future

  • The relatively short period of observations, compared with the long timescales of ice sheet dynamics makes for challenging evaluation of ice sheet surface elevation change due to ice dynamics

  • The Greenland ice sheet has been observed by satellite and documented in detail for almost three decades

Read more

Summary

Introduction

The Greenland ice sheet is a major contributor to present day observed sea level rise [1,2] and a changing Arctic climate will likely continue to have a profound impact on the ice sheet mass budget in the future. The contribution to sea level rise from the Greenland ice sheet is determined by the total mass budget that results from two main processes: the melt and runoff of surface snow and ice and a dynamic component due to iceberg calving and ice-ocean interactions at ocean terminating glaciers. The mass budget of the ice sheet as a whole is driven by precipitation at the surface of the ice sheet, which is balanced at the surface by ice melt and runoff. More minor contributions to the mass budget come from basal melting but this process is not considered in detail here

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.