Abstract

Biofilters made of Ulva and periphyton differ in their effectiveness in removing ammonia and nitrate from mariculture effluents. Our research evaluated the practicality of a combination of these two biofilters in improving the overall removal of dissolved N, where efficient removal of ammonia by the seaweed is followed by efficient removal of nitrate by periphyton. A paired Ulva-periphyton biofilter was exposed to various areal loads of ammonia and nitrate, the primary nitrogen forms in fishpond effluents.A first upstream macroalgae biofilter stocked with Ulva was fed with fishpond effluents at different areal loads of ammonia and nitrate, while a second downstream periphyton biofilter was paired for further nitrogen removal from the effluent. Ulva removed ammonia at a rate of 0.7–5.4 g TAN m−2 d−1, in correlation with the TAN areal load, with Vmax of 5.1 and Km of 4.4 g TAN m−2 d−1. Downstream periphyton was exposed to a lower TAN, but nitrate-rich effluent, and revealed similar capacities for the removal of both N forms, at removal rates of up to 1.7 and 1.8 g N m−2 d−1, respectively. Compared to nitrate, areal load of TAN had a greater impact on the removal dynamics of both N forms by periphyton. Overall, the paired biofilter resulted in a nearly total depletion of ammonia (97%) and efficient nitrate removal (67%), when areal loads in fishpond effluents were below 2 and 4 g N m−2 d−1 of TAN and NO3-N, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call