Abstract

One of the primary constraints in the design and deployment of WSNs is energy, as sensor nodes are powered by batteries. In such networks, energy efficiency can be achieved by reducing the use of the onboard radios, for instance, limiting packet transmissions. The broadcast nature of the wireless channel surely represents an advantage in this respect: each node has to send a single broadcast packet to simultaneously reach all its neighboring nodes, thus reducing the number of required transmissions. We present an integrated optimization framework leveraging on this advantage to improve the convergence speed of a distributed consensus algorithm, by means of topology design. We evaluate the effectiveness of the proposed framework in terms of overall energy savings and worst case algorithmic complexity of the optimization task, on different classes of network topologies, and compare such results with those obtained by a pure greedy strategy recently proposed in the literature. We prove that our framework can slightly reduce the average nodes' energy cost with respect to its greedy antagonist, as well as reducing the computational overhead of the optimization task to a small fraction of the latter. These unique features make it suitable to tackle the problem also over large scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.