Abstract

The petrography, fluid inclusion thermometry and isotope geochemistry of diagenetic cements are used to reconstruct the pore-fluid history of the Middle Jurassic Brent Group reservoir sandstones in the Alwyn South area of the U.K. North Sea. The study focuses on a relatively limited area of three adjacent reservoir compartments at successively higher structural levels. The cement assemblage of kaolinite, quartz and illite has resulted in severe deterioration of otherwise good reservoir quality. Early precipitation of vermiform and late blocky kaolinite was succeeded by a period of relatively intense illite precipitation. Temperature estimates for kaolinite precipitation of 80°C and δ 18O of ≈ + 15‰ (±3‰) suggest co-existing fluids of δ 18O ≈ −3‰. Quartz cementation overlapped both kaolinite and illite formation. Fluid inclusion data indicate that quartz cementation took place at temperatures of 109±7°C. Pore fluid salinities were ≈4 wt% NaCl with a H 2O O isotopic composition of ≈ -1 %o ± 0.5‰ SMOW. The fluids which precipitated coexisting illite were compositionally homogeneous with equilibrium δ 18O water compositions of +0.5‰ SMOW. Illite SD values range from −33 to −50‰ SMOW. These fluid inclusion and isotopic data suggest that both quartz and illite were precipitated from pore waters with a uniform, marine signature. This is consistent with the predominantly marine to paralic depositional context of the Brent Group in Alywn South. Illite precipitation was followed by hydrocarbon emplacement between the Middle Eocene and Lower Oligocene.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call