Abstract

The healing of biofilm-infected diabetic wounds characterized by a deteriorative tissue microenvironment represents a substantial clinical challenge. Current treatments remain unsatisfactory due to the limited antibiofilm efficacy caused by weak tissue and biofilm permeability of drugs and the risk of reinfection during the healing process. To address these issues, an integrated therapeutic and preventive nanozyme-based microneedle (denoted as Fe2 C/GOx@MNs) is engineered. The dissolvable tips with enough mechanical strength can deliver and rapidly release Fe2 C nanoparticles (NPs)/glucose oxidase (GOx) in the biofilm active regions, enhancing tissue and biofilm permeability of Fe2 C NPs/GOx, ultimately achieving highly efficient biofilm elimination. Meanwhile, the chitosan backing layer can not only act as an excellent physical barrier between the wound bed and the external environment, but also prevent the bacterial reinvasion during wound healing with its superior antibacterial property. Significantly, the biofilm elimination and reinfection prevention abilities of Fe2 C/GOx@MNs on wound healing are proved on methicillin-resistant Staphylococcus aureus-biofilm-infected diabetic mouse model with full-thickness wound. Together, these results demonstrate the promising clinical application of Fe2 C/GOx@MNs in biofilm-infected wound healing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call