Abstract

The increased adoption of information and communication technology for smart grid applications will require innovative cyber–physical system (CPS) testbeds to support research and education in the field. Groundbreaking CPS testbeds with realistic and scalable platforms have progressively gained interest in recent years, with electric power flowing in the physical layer and information flowing in the network layer. However, CPSs are critical infrastructures and not designed for testing or direct training, as any misbehaving in an actual system operation could cause a catastrophic impact on its operation. Based on that, it is not easy to efficiently train professionals in CPSs. Aiming to support the advancement and encourage the training of industry professionals, this paper proposes and develops a complete testbed using a real-time simulator, protection and automation devices, and a supervisory control and data acquisition (SCADA) system. The testbed replicated the performance of smart grids, and the main potential cyber threats that electric grids may face. Different case scenarios include a distribution system protection study, a denial of service (DoS) attack, a jamming attack, a network packet manipulation attack, a sensor data manipulation attack, a false trip command attack, etc. The system’s performance before and after the cyberattacks are studied using packet-sniffing tools and a network packet analyzer. The impact on the grid is analyzed using metrics such as voltage oscillation, frequency deviation, and loss of active power generation. Moreover, the complex interdependencies between the cyber and physical domains are discussed in detail, providing insightful guidelines for key features and design decisions for future smart grid testbeds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.