Abstract

Extensible processors allow customization for an application by extending the core instruction set architecture. Extracting appropriate custom instructions is an important phase for implementing an application on an extensible processor with a reconfigurable functional unit. Custom instructions (CIs) usually are extracted from critical portions of applications. This paper presents approaches for CI generation with respect to the RFU constraints to improve speedup of the extensible processor. First, our proposed RFU architecture for an adaptive dynamic extensible processor called AMBER is described. Then, an integrated temporal partitioning and mapping framework is presented to partition and map the CIs on the RFU. In this framework, a mapping aware temporal partitioning algorithm is used to generate CIs which are mappable on the RFU. Temporal partitioning iterates and modifies partitions incrementally to generate CIs. In addition, a mapping algorithm is presented which supports CIs with critical path length more than the RFU depth.KeywordsCritical PathIntegrate FrameworkMapping FrameworkCustom InstructionData Flow GraphThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call