Abstract

Atherosclerosis conditions are often assessed in the clinic by measuring blood viscosity, blood flow, and blood lesion levels. In alignment with precision medicine, it is essential to develop convenient and noninvasive approaches for atherosclerosis diagnostics. Herein, an integrated electrochemical sensor was successfully demonstrated for simultaneously detecting cholesterol, transferrin, and K+ in sweat, all biomarker indicators of atherosclerosis. The sensing substrate was based on carbon quantum dots integrated within multiwalled carbon nanotubes, creating a hybrid framework with low electron transfer resistance and highly efficient electron transfer rate, yielding a highly electrochemical active platform for ultrasensitive detection of trace sweat biomarkers. To ensure specificity to corresponding targets, the sensing mechanisms were based on molecular recognition reactions of cholesterol and β-cyclodextrin, transferrin and molecular cavities, and K+ and ion-selective permeation membrane. Moreover, the integrated nonenzymatic sensor exhibited excellent long-term stability. Furthermore, the practical utility of the sensor was successfully demonstrated by the simultaneous detection of three atherosclerosis biomarkers in sweat from volunteers who underwent predesigned daily activities. The sensor shows promise for convenient indexing of atherosclerosis conditions in a noninvasive way.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call