Abstract

Soil microbial metabolic potential and ecosystem function have received little attention owing to difficulties in methodology. In this study, we selected natural mature forest and natural secondary forest and analyzed the soil microbial community and metabolic potential combing the high-throughput sequencing and GeoChip technologies. Phylogenetic analysis based on 16S rRNA sequencing showed that one known archaeal phylum and 15 known bacterial phyla as well as unclassified phylotypes were presented in these forest soils, and Acidobacteria, Protecobacteria, and Actinobacteria were three of most abundant phyla. The detected microbial functional gene groups were related to different biogeochemical processes, including carbon degradation, carbon fixation, methane metabolism, nitrogen cycling, phosphorus utilization, sulfur cycling, etc. The Shannon index for detected functional gene probes was significantly higher (P<0.05) at natural secondary forest site. The regression analysis showed that a strong positive (P<0.05) correlation was existed between the soil microbial functional gene diversity and phylogenetic diversity. Mantel test showed that soil oxidizable organic carbon, soil total nitrogen and cellulose, glucanase, and amylase activities were significantly linked (P<0.05) to the relative abundance of corresponded functional gene groups. Variance partitioning analysis showed that a total of 81.58% of the variation in community structure was explained by soil chemical factors, soil temperature, and plant diversity. Therefore, the positive link of soil microbial structure and composition to functional activity related to ecosystem functioning was existed, and the natural secondary forest soil may occur the high microbial metabolic potential. Although the results can't directly reflect the actual microbial populations and functional activities, this study provides insight into the potential activity of the microbial community and associated feedback responses of the terrestrial ecosystem to environmental changes.

Highlights

  • Microorganisms are the most abundant organisms on earth and play key roles in natural ecosystem, including the biogeochemical cycling of carbon, nitrogen, sulfur, phosphorus, and metals, and biodegradation or stabilization of environmental contaminants [1,2,3]

  • Fierer et al indicated that all biomes were dominated by Acidobacteria, Actinobacteria, Proteobacteria and Bacteroidetes, and the bacterial community composition does not vary significantly across different biomes [1].Our results showed that microbial diversity at the phylum level differed between the two forest types, and Acidobacteria, Protecobacteria, and Actinobacteria were three of most abundant soil bacterial phyla

  • The relative abundance of Acidobacteria was shown to be higher in forest, desert, and prairie soils compared with agricultural soils [28]

Read more

Summary

Introduction

Microorganisms are the most abundant organisms on earth and play key roles in natural ecosystem, including the biogeochemical cycling of carbon, nitrogen, sulfur, phosphorus, and metals, and biodegradation or stabilization of environmental contaminants [1,2,3]. Because of their important roles, changes in soil microbial community may directly affect soil ecosystem function, carbon and nitrogen cycling [4]. A deeply analysis of microbial community structure and their roles in ecological processes would improve our understanding of the biogeochemical elemental cycles affected by microbial communities in natural or man-made environments [5]. Functional gene microarrays, with quantitative and high resolution capabilities, may be a useful tool for this purpose [10,11]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call