Abstract
Ethnopharmacological relevanceBupleurum chinense DC-Paeonia lactiflora Pall (BCD-PLP) is a common clinical herb pair in traditional Chinese medicine (TCM) prescriptions commonly used to treat depression. However, its combination mechanisms with its anti-depressive effects remain highly unclear. Aim of the studyHere, an effective strategy has been developed to study the combination mechanisms of Bupleurum chinense DC (BCD) and Paeonia lactiflora Pall (PLP) by integrating serum pharmacochemistry analysis, metabolomics technology, and molecular docking technology. Materials and methodsFirst, the depression model rats were replicated by the chronic unpredictable mild stress (CUMS) procedure, and the difference in the chemical composition in vivo before and after the combination of BCD and PLP was analyzed by integrating background subtraction and multivariate statistical analysis techniques. Then, UPLC/HRMS-based serum metabolomics was performed to analyze the synergistic effect on metabolite regulation before and after the combination of BCD and PLP. Further, the correlation analysis between the differential exogenous chemical components and the differential endogenous metabolites before and after the combination was employed to dissect the combination mechanisms from a global perspective of combining metabolomics and serum pharmacochemistry. Finally, the molecular docking between the differential chemical components and the key metabolic enzymes was applied to verify the regulatory effect of the differential exogenous chemical components on the differential endogenous metabolites. ResultsThe serum pharmacochemistry analysis results demonstrated that the combination of BCD and PLP could significantly affect the content of 10 components in BCD (including 5 prototype components were significantly decreased and 5 metabolites were significantly increased) and 8 components in PLP (including 4 prototype components and 3 metabolites were significantly increased, 1 metabolite was significantly decreased), which indicated that the combination could enhance BCD prototype components' metabolism and the absorption of the PLP prototype components. Besides, metabolomics results indicated that the BCD-PLP herb pair group significantly reversed more metabolites (8) than BCD and PLP single herb group (5 & 4) and has a stronger regulatory effect on metabolite disorders caused by CUMS. Furthermore, the correlation analysis results suggested that saikogenin F and saikogenin G were significantly positively correlated with the endogenous metabolite itaconate, an endogenous anti-inflammatory metabolite; and benzoic acid was significantly positively correlated with D-serine, an endogenous metabolite with an antidepressant effect. Finally, the molecular docking results further confirmed that the combination of BCD and PLP could affect the activities of cis-aconitic acid decarboxylase and D-amino acid oxidase by increasing the in vivo concentration of saikogenin F and benzoic acid, which further enhances its anti-inflammatory activity and anti-depressive effect. ConclusionsIn this study, an effective strategy has been developed to study the combination mechanisms of BCD and PLP by integrating serum pharmacochemistry analysis, multivariate statistical analysis, metabolomics technology, and molecular docking technology. Based on this strategy, the present study indicated that the combination of BCD and PLP could affect the activities of cis-aconitic acid decarboxylase and D-amino acid oxidase by increasing the concentration of saikogenin F and benzoic acid in vivo, which further enhances its anti-depressive effect. In short, this strategy will provide a reliable method for elucidating the herb-herb compatibility mechanism of TCM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.