Abstract

The Internet of Things (IoT), namely, the set of intelligent devices equipped with sensors and actuators and capable of connecting to the Internet, has now become an integral part of the most competitive industries, as it enables optimization of production processes and reduction in operating costs and maintenance time, together with improving the quality of products and services. More specifically, the term Industrial Internet of Things (IIoT) identifies the system which consists of advanced Internet-connected equipment and analytics platforms specialized for industrial activities, where IIoT devices range from small environmental sensors to complex industrial robots. This paper presents an integrated high-level SDN-NFV architecture enabling clusters of smart devices to interconnect and manage the exchange of data with distributed control processes and databases. In particular, it is focused on 5G RAN-MEC slice management in the IIoT context. The proposed system is emulated by means of two distinct real-time frameworks, demonstrating improvements in connectivity, energy efficiency, end-to-end latency and throughput. In addition, its scalability, modularity and flexibility are assessed, making this framework suitable to test advanced and more applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.