Abstract

Abstract This paper presents a complete methodology for the development of an integrated software architecture, which can achieve a closed-loop application between the integrated real-time control (RTC) and a virtual reality simulation for the urban drainage system (UDS). Quality measurements are considered during the simulation and optimization process. Model predictive control (MPC) and rule-based control (RBC) are the two main RTC methods embedded in this architecture. The proposed integration environment allows the different software components to efficiently and effectively communicate and work in a system-wide way, as well as to execute all the necessary steps regarding input parameter management, scenario configuration and results extraction. The proposed approaches are implemented into a pilot based on the Badalona UDS (Spain). Results from different scenarios with individual control approaches and rain episodes are evaluated and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.