Abstract

Integrated fabrics with a smart heating control system (HCS) are attractive in warming and thermotherapy for human healthcare management. Metal nanofibers (NFs) networks with high flexibility, conductivity and gas permeability are ideal functional materials for wearable electronics. Herein, a novel sandwich-structural (Ag NFs/fabrics/Pt NFs) textile for a HCS is constructed, where a Ag NF network film was functioned as a wearable heater and Pt NF network arrays were functioned as wearable temperature sensors. Conductivity and mechanical stability of the metal NFs were enhanced by crosslinking the free-standing fiber networks, resulting in high thermo-stability, thermal resistance (163.5 °C W−1 cm2) and temperature sensitivity (0.135% °C−1) of the HCS. The HCS can simultaneously realize heating and temperature distribution detection, demonstrating only 0.57% average error between the simulated resistance-to-temperature diagram of Pt NF arrays and actual temperature mapping. In addition, the HCS can be stuck on the skin for thermochromic fabrics, real-time heating and temperature detection/control through a Bluetooth device in a smartphone wirelessly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call