Abstract

Three-axis atomic magnetometers have great advantages for interpreting information conveyed by magnetic fields. Here, we demonstrate a compact construction of a three-axis vector atomic magnetometer. The magnetometer is operated with a single laser beam and with a specially designed triangular 87Rb vapor cell (side length is 5 mm). The ability of three-axis measurement is realized by reflecting the light beam in the cell chamber under high pressure, so that the atoms before and after reflection are polarized along two different directions. It achieves a sensitivity of 40 fT/Hz in x-axis, 20 fT/Hz in y-axis, and 30 fT/Hz in z-axis under spin-exchange relaxation-free regime. The crosstalk effect between different axes is proven to be little in this configuration. The sensor configuration here is expected to form further values, especially for vector biomagnetism measurement, clinical diagnosis, and field source reconstruction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.