Abstract

Class-switched neutralizing Ab (nAb) production is rapidly induced upon many viral infections. However, due to the presence of multiple components in virions, the precise biochemical and biophysical signals from viral infections that initiate nAb responses remain inadequately defined. Using a reductionist system of synthetic virus-like structures, in this study, we show that a foreign protein on a virion-sized liposome can serve as a stand-alone danger signal to initiate class-switched nAb responses without T cell help or TLR but requires CD19. Introduction of internal nucleic acids (iNAs) obviates the need for CD19, lowers the epitope density (ED) required to elicit the Ab response, and transforms these structures into highly potent immunogens that rival conventional virus-like particles in their ability to elicit strong Ag-specific IgG. As early as day 5 after immunization, structures harboring iNAs and decorated with just a few molecules of surface Ag at doses as low as 100 ng induced all IgG subclasses of Ab in mice and reproduced the IgG2a/2c restriction that is long observed in live viral infections. These findings reveal a shared mechanism for the nAb response in mice. High ED is capable but not necessary for driving Ab secretion. Instead, even a few molecules of surface Ag, when combined with nucleic acids within these structures, can trigger strong IgG production. As a result, the signaling threshold for induction of IgG in individual B cells is set by dual signals originating from both ED on the surface and the presence of iNAs within viral particulate immunogens.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.